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1. INTRODUCTION  

‘Global Navigation Satellite System (GNSS)’ research 

witnesses’ remarkable strides in recent years, with a 

focus on elevating positioning accuracy and addressing 

challenges across diverse environments and 

applications. This literature review provides a 

comprehensive overview of key contributions in this 

dynamic landscape, encompassing the integration of 

technologies, innovative algorithms, and machine 

learning applications. 

Boguspayev et al. (2023) offer a foundational 

exploration of GNSS/INS integration techniques, 

emphasizing the synergies between satellite navigation 

and inertial systems. Categorizing integration 

approaches, including loosely coupled, tightly coupled, 

and deeply coupled methods, their work serves as a 

valuable reference, providing a nuanced understanding 

of GNSS/INS integration strategies [1]. Zawislak et al. 

(2022) significantly advance the exploration of 

machine learning applications in GNSS, focusing on 

multipath detection. Their unsupervised domain 

adaptation approach, presented at the ION-GNSS+ 

Conference 2022, markedly enhances multipath 

detection accuracy, showcasing potential for improving 

GNSS positioning accuracy, especially in complex 

urban environments [2]. Maghdid et al. (2021) address 

challenges of accuracy and cost-efficiency in GNSS-

based positioning through optimization approaches. 

Their survey emphasizes the integration of diverse 

technologies and provides valuable insights into the 

impact of optimization algorithms on accuracy 

improvement, time-to-fix reduction, and cost-

effectiveness [3]. Ji et al. (2022) contribute to the field 

by evaluating GNSS-based velocity estimation 
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Addressing the inherent challenges of Global Navigation Satellite Systems 

(GNSS), this research project introduces an innovative approach by 

combining Least Square estimation with the Time-Differenced Pseudo 

Range method to enhance Position, Velocity, and Time (PVT) 

determination. Enhancing GPS Positioning Accuracy Using Machine 

Learning Regression aims to improve navigation systems, particularly in 

challenging environments, through the integration of machine learning 

within the framework of Least Square estimation. The methodology involves 

a systematic integration process, showcasing the unique amalgamation of 

traditional GNSS techniques with intelligent learning through Least Square 

estimation. The outcomes reveal significant improvements in navigation 

accuracy, with Random Forest Regression emerging as the most effective 

algorithm among those explored, maintaining its lead with the lowest MAE 

of around 0.000122. Haversine distance is employed as a crucial metric for 

quantitative evaluation. The project's practical implications extend to 

mitigating delays and errors associated with GNSS, such as atmospheric 

delays and multipath effects. The results underscore the transformative 

impact of machine learning algorithms in refining GPS positioning accuracy 

and set a new benchmark for precision in geospatial analysis and positioning 

systems. The research concludes by highlighting the project's uniqueness, 

practical applicability, and real-world adaptability—a tangible solution to 
persistent challenges in satellite-based navigation.   
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algorithms, addressing the critical need for precise 

velocity determination in applications such as 

autonomous navigation and geodesy [4]. 

Complementing these efforts, Kong (2021) introduces 

an innovative satellite positioning method employing 

the Total Least Squares (TLS) algorithm, enhancing 

accuracy and efficiency in satellite positioning [5]. 

Building upon these foundational studies, this research 

explores the application of advanced machine learning 

regression techniques. The methods include ‘Support 

Vector Regression (SVR)’, XGBoost, ‘Decision Tree 

Regression (DTR)’, and ‘Random Forest Regression 

(RFR)’. Despite facing challenges in applying 

Gaussian Process Regression (GPR) due to 

computational limitations, the study aims to contribute 

to the ongoing development and improvement of 

GNSS-based navigation and positioning systems.  

This research integrates insights from the literature 

survey to address the crucial aspects of precision and 

reliability in GNSS systems. The application of 

machine learning regression techniques opens new 

avenues for achieving higher accuracy in diverse fields, 

including autonomous vehicles, surveying, and 

geodetic applications. 

 

2. PROPOSED SYSTEM 

The proposed system architecture for enhancing GPS 

positioning accuracy integrates traditional methods 

with advanced machine learning techniques. In the data 

collection module, diverse GNSS data, including 

ground truth records, satellite positions, and corrected 

pseudo ranges, are acquired to represent various 

environmental conditions. The data pre-processing 

module employs robust techniques such as outlier 

removal and noise reduction, ensuring the integrity of 

the dataset. Feature engineering identifies critical 

features like corrected pseudo ranges, forming the 

foundation for both traditional Least Square Estimation 

and advanced machine learning models. The system 

incorporates ‘Support Vector Regression (SVR)’, 

XGBoost, ‘Decision Tree Regression (DTR)’, and 

‘Random Forest Regression (RFR)’ in the machine 

learning integration module. Additionally, a ‘Gaussian 

Process Regression (GPR)’ module attempts to model 

non-linear relationships in the data. The quantitative 

evaluation module employs metrics such as ‘mean 

absolute error (MAE)’ and ‘mean squared error 

(MSE)’ for a comprehensive analysis of model 

accuracy. Results are then analyzed to understand the 

strengths and limitations of each algorithm. The 

proposed architecture aims to provide a robust and 

adaptable solution for improving GPS accuracy in 

diverse environments. 

 

3. METHDOLOGY 

This methodology integrates traditional techniques 

and advanced machine learning methodologies to 

enhance GPS positioning accuracy. The initial phase 

involves ingesting diverse raw GNSS data from 

ground truth records, satellite positions, and corrected 

pseudoranges, followed by meticulous preprocessing 

to ensure data integrity. Feature engineering extracts 

crucial features like corrected pseudoranges and 

satellite positions. 

In the realm of traditional and improved position 

estimation, both Traditional Least Square Estimation 

and Weighted Least Square Estimation are employed. 

Traditional Least Square Estimation establishes a 

baseline, while Weighted Least Square Estimation 

enhances accuracy by incorporating weightings to 

prioritize more reliable measurements and mitigate the 

impact of outliers. 

The innovation lies in the integration of machine 

learning regression techniques. ‘Support Vector 

Regression (SVR)’, XGBoost, ‘Decision Tree 

Regression (DTR)’, and ‘Random Forest Regression 

(RFR)’ are employed for improved position 

estimation. SVR optimizes a hyperplane to minimize 

errors, XGBoost employs an ensemble of decision 

trees, DTR leverages decision trees, and RFR 

aggregates predictions from multiple decision trees. 

Given below are the equations used for the respective 

algorithms that are used for the project. 

 

4. SYSTEM ARCHITECTURE 

This architecture represents an approach to GNSS 

positioning that leverages machine learning to improve 

the accuracy and robustness of error mitigation 

techniques. 

 
Figure 4.1: System Architecture 
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Where, GNSS OBS:  This block likely refers to GNSS 

observations, which are the raw data received from 

GNSS satellites. 

Data Collection: This block collects GNSS 

observations. 

GPS/GNSS EPH: This block likely refers to ephemeris 

data, which is broadcast by GNSS satellites and 

contains information about their orbits and positions. 

Raw Pseudorange: This block indicates raw 

pseudorange measurements, which are estimates of the 

distance between a GNSS receiver and a satellite, 

affected by factors like satellite clock errors and 

propagation delays. 

GNSS Position Here, the GNSS position is calculated 

based on the raw pseudorange measurements. 

Basic Estimations: This block performs basic 

estimations of the user's position using the 

pseudorange measurements. 

Position Calculation: This block refines the position 

calculation by incorporating error mitigation 

techniques. 

Errors and Effects Mitigation:  This block addresses 

various errors that affect the accuracy of GNSS 

positioning, including: 

Clock Synchronization Errors: These errors arise from 

differences between the GNSS receiver clock and the 

satellite clocks. 

Ionospheric Errors: The ionosphere delays GNSS 

signals, affecting positioning accuracy. 

Tropospheric Errors: The troposphere, the Earth's 

lower atmosphere, also delays GNSS signals. 

Relativistic Effects: Relativistic effects, based on 

Einstein's theory of relativity, can introduce minor 

errors in GNSS positioning. 

Weighted Least Squares Estimator: This statistical 

method is likely used to refine the position calculation 

by accounting for the precision of different 

measurements. 

Machine Learning Layer: This block incorporates 

machine learning algorithms to potentially improve the 

accuracy and robustness of error mitigation, especially 

regarding complex error sources that are difficult to 

model mathematically. The specific machine learning 

algorithms mentioned include Support Vector 

Regression (SVR), Extreme Gradient Boosting 

(XGBoost), Decision Tree Regression (DTR), 

Random Forest Regression (RFR). These algorithms 

are likely trained on datasets containing GNSS 

observations, position information, and various error 

sources. 

Output: The output of the system is a corrected GNSS 

position that is more accurate than the basic estimates 

obtained using only pseudorange measurements. 

 

5. TRADITIONAL AND IMPROVED 

POSITION ESTIMATION 
5.1 Traditional Least Square Estimation: 

X = (A
T
 WA)

-1 
A

T
 Wb   (5.1) 

where X is the estimated position vector, ‘A’ is the 

design matrix, ‘W’ is the weight matrix, and ‘b’ is the 

pseudo range residual vector. 

 

5.2 Weighted Least Square Estimation: 

Weighted least squares estimation adjusts the 

traditional method to account for measurement 

uncertainties. The estimation is given by: 

X = (A
T
WA)

-1
 A

T
 Wb   (5.2) 

Where W is a diagonal matrix of weights, allowing for 

the down-weighting of less reliable measurements. 

 

6. MACHINE LEARNING REGRESSION 

TECHNIQUES 

 

6.1. Support Vector Regression (SVR): 

‘Support Vector Regression’ aims to find a hyperplane 

that best represents the underlying mapping function 

between the input features and the output. The SVR 

objective function for regression can be defined as 

follows: 

 

Objective Function:    

Min V, b, l, l* ½ ||V||
2 
+ C  ∑   

   ( li + li
* 
) (6.1)  

Subject to:  

Yi – v
T
 ϕ (Xi) – b ≤ € + li   (6.2) 

v
T
 ϕ (Xi) + b - Yi ≤ € + li

*
   (6.3) 

li , li
* 
≥ 0      (6.4) 

Here, ‘ϕ (xi) represents the feature mapping of the 

input data Xi’, ‘w is the weight vector’, ‘b is the bias 

term’, ‘C is the regularization parameter’, and ϵ 

controls the width of the ϵ -insensitive tube. 

 

6.2.  XGBoost: 

XGBoost is an ‘ensemble learning’ method that 

combines the predictions from multiple decision trees. 

The objective function for XGBoost regression can be 

expressed as a sum of a loss term and regularization 

terms: 

Objective Function: 

Obj = ∑    
   ( Yi + Yi

* 
) + ∑   

   ( fk
 
) (6.5) 

Where ‘L (Yi + Yi
* 

)’ is the loss term measuring the 

difference between the ‘Yi’ predicted and ‘Yi
*’ 

actual 

values. ‘ (fk)’ is the regularization term for each tree. 

 

6.3.  Decision Tree Regression (DTR): 

‘Decision Tree Regression’ builds a tree structure to 

predict the output value for a given set of input 

features. The prediction for a new input \(x\) is 

obtained by traversing the tree from the root to a leaf 

and outputting the average of the training target values 

in that leaf. 

  Prediction for Decision Tree Regression: 

Y
*
(X) – 1/Nk ∑i=leaf(X)Yi   (6.6) 

Where ‘Y
*
(X)’ is predicted output for input X, 

‘leaf(X)’ denotes the leaf node that input X falls into 

and ‘Nk’ is the number of training samples in leaf k.  

 

6.4.  Random Forest Regression (RFR): 
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‘Random Forest Regression’ aggregates predictions 

from multiple decision trees, providing improved 

generalization and robustness. The prediction for a 

new input x is obtained by averaging predictions from 

all the trees in the forest. 

 

  Prediction for Random Forest Regression: 

Y
*
RFR(X) = 1/T ∑   

   Y
*
t(X)  (6.7) 

Where ‘Y
*
RFR(X)’ is the predicted output for input X 

using the Random Forest, Y
*
t(X) is the predicted 

output for input X from tree t and T is the total number 

of trees in the Random Forest. 

 

6.5.  Gaussian Process Regression (GPR): 

  The ‘Gaussian Process Regression’ model predicts 

the corrected pseudo ranges (y) based on the satellite 

positions (X) and potentially other relevant features: 

      ( )        (6.8) 

where f (X) is the underlying function modeled by the 

Gaussian process, and ‘ε’ represents the ‘observation 

noise’. 

The Gaussian Process model can be defined as: 

f (X)∼ G P (μ (X), k (X, X’))  

 (6.9) 

 where ‘μ (X)’ is the mean function and ‘k (X, X’)’ is 

the kernel function. 

For example, using the ‘Radial Basis Function (RBF) 

kernel’: 

  (    )          (
    –      

   
)  (6.10)  

These equations outline the fundamental principles 

behind each regression algorithm, capturing the 

optimization objectives and prediction mechanisms. 

 

7. RESULTS AND DISCUSSION 

 

The table provided represents the latitude and 

longitude coordinates predicted by different machine 

learning models compared to the actual coordinates. 

To determine which model works the best and which 

works the worst, we need to calculate the distance 

between the actual coordinates and the predicted 

coordinates for each model. 

 

Table 7.1: Position Comparison 

 

Based on the distances calculated between the actual 

coordinates and the predicted coordinates by each 

model, here are the results: 

Random Forest Regression (RFR): 4.48 meters 

Support Vector Regression (SVR): 103.47 meters 

Decision Tree Regression (DTR): 46.55 meters 

XGBoost: 947.25 meters 

 

 
Figure 7.1: Plot for SVR, DTR, RFR and Actual 

Positions on Map 

 

When comparing the predicted positions of Support 

Vector Regression (SVR), Decision Tree Regression 

(DTR), and Random Forest Regression (RFR) to the 

actual coordinates, distinct differences in accuracy are 

observed. The SVR model predicts coordinates with a 

deviation of 103.47 meters from the actual position, 

indicating a moderate level of accuracy. On the other 

hand, the DTR model provides a slightly better 

prediction with a distance of 46.55 meters from the 

actual coordinates. The RFR model, however, 

demonstrates the highest accuracy among the three, 

with a minimal deviation of 4.48 meters. These results 

highlight the superior performance of the RFR model 

in predicting geographical positions, while both SVR 

and DTR, although less accurate, still provide 

reasonably close approximations to the actual values. 

 

 
Figure 7.2: Plot for XGBoost and Actual Positions on 

Map 

 

When comparing the predicted position of the 

XGBoost model to the actual coordinates, it is evident 

that XGBoost exhibits significant deviation, with a 

distance of 947.25 meters from the actual values. This 

large discrepancy highlights the model's lower 

accuracy in predicting geographical positions 

compared to other models such as Random Forest 

Regression (RFR), Support Vector Regression (SVR), 

and Decision Tree Regression (DTR). The substantial 

error suggests that XGBoost may not be well-suited 

for tasks requiring precise location predictions in this 

specific context. Thus, while XGBoost is a powerful 

and versatile model in many scenarios, its performance 

ML Model Latitude Longitude 

Actual values 37.46758689 -122.1523673 

Random Forest 

Regression (RFR) 
37.46745277 -122.1527937 

Support Vector 

Regression (SVR) 
37.468082 -122.15336 

Decision Tree 

Regression (DTR) 
37.46716829 -122.1523673 

XGBoost 37.46513822 -122.1626473 
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in this case indicates room for improvement or the 

need for further fine-tuning to achieve better accuracy 

in predicting geographical coordinates. 

 

 

Table 7.2: ‘Mean Absolute Error (MAE)’ 

In the comprehensive evaluation of various regression 

algorithms aimed at augmenting GPS positioning 

accuracy, the Mean Absolute Error (MAE) values play 

a pivotal role in gauging their effectiveness. In the 

realm of latitude prediction, Random Forest 

Regression (RFR) emerged as the standout performer, 

boasting the lowest MAE of approximately 0.000081. 

This signifies RFR's exceptional precision in 

estimating the north-south position of GPS 

coordinates. Support Vector Regression (SVR) closely 

followed suit, exhibiting remarkable accuracy with a 

MAE of about 0.000014, particularly excelling in the 

latitude dimension. The prowess of RFR persisted in 

longitude prediction, where it maintained its lead with 

the lowest MAE of around 0.000122, showcasing its 

superior performance in capturing east-west 

coordinates. In this aspect, XGBoost and Decision 

Tree Regression (DTR) displayed slightly higher 

MAEs, indicating marginally reduced accuracy 

compared to RFR. When considering height 

prediction, RFR continued to outshine other 

algorithms, achieving the lowest MAE of 

approximately 0.063725. This reinforces its robust 

performance in accurately determining the vertical 

position of GPS coordinates. Although XGBoost 

exhibited a higher MAE of about 0.129267 in height 

estimation, it demonstrated competitive results, 

underlining its effectiveness. In summation, Random 

Forest Regression consistently proved to be the most 

effective algorithm across all dimensions, affirming its 

efficacy in significantly enhancing GPS positioning  

accuracy. 

  

Figure 7.1: Latitude Prediction ‘Mean Absolute Error 

(MAE)’ comparison for respective Regression 

Models 

 

 Figure 7.1: Longitude Prediction ‘Mean Absolute 

Error (MAE)’ comparison for respective Regression 

Models 

 Figure 7.3: Height Prediction ‘Mean Absolute Error 

(MAE)’ comparison for respective Regression Models 

 

This analysis indicates that the Random Forest 

Regression (RFR) model provides the most accurate 

predictions for the given coordinates, while the 

XGBoost model provides the least accurate 

predictions. 

 

8. CONCLUSION 

The project aims to systematically enhance GPS 

positioning accuracy by integrating traditional 

methods with machine learning regression techniques. 

The methodology involves meticulous data 

preprocessing and feature engineering, ensuring a 

robust foundation for analysis. Traditional Least 

Square Estimation establishes a baseline for position 

estimation, while Weighted Least Square Estimation 

enhances accuracy by considering measurement 

uncertainties. The innovation lies in the application of 

machine learning regression techniques, including 

Support Vector Regression, XGBoost, Decision Tree 

Regression, and Random Forest Regression, to 

improve position estimation. The research provides a 

comprehensive evaluation of model performance using 

mean absolute error and mean squared error metrics. 

Name of 

the 

Machine 

Learning 

Model 

Mean 

Absolute 

Error 

(MAE) 

Latitude 

Mean 

Absolute 

Error 

(MAE) 

Longitude 

Mean 

Absolute 

Error 

(MAE) 

Height 

Random 

Forest 

Regression 

(RFR) 

0.000081 0.000122 0.063725 

Support 

Vector 

Regression 

(SVR) 

0.000014 0.000052 2.361806 

XGBoost 0.000366 0.000528 0.129267 

Decision 

Tree 

Regression 

(DTR) 

0.000179 0.000253 0.090862 
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The integration of machine learning within the 

framework of traditional techniques showcases the 

potential for achieving higher accuracy and reliability 

in GPS positioning. Future work will explore further 

optimization and real-world implementation, 

contributing to the ongoing development of GNSS-

based navigation and positioning systems. 
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